

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

OVERARCHING PROJECT GOAL

Implement a systems approach to redesign and manufacture a high-volume 2019 mid-size Honda SUV's glider system to achieve cost-effective and sustainable light-weighting through component consolidation, state-of-the-art optimization tools, multi-material joining methods, industry-standard manufacturing processes and recycling technologies while meeting or exceeding baseline performance.

TIMELINE

- Start: October 1st, 2021
- End: December 31st,2024
- Level of Completion: 15 %

BUDGET

Total Project Funds: \$11.5 Million

- \$5.75 Million DOE
- \$ 5.75 Million Cost share

BARRIERS IN ACHIEVING PROJECT GOAL

- Costperformance tradeoff
- Identifying the trade-off between composites and traditional metals for cost-effective redesign
- Using composites while enabling fast manufacturing cycle times and preserving OEM's existing joining & assembly infrastructure
- Achieving cost and light-weighting targets while meeting or exceeding baseline performance targets
- Developing and integrating cost, sustainability, and performance predictive tools to identify suitable material systems and designs.
- Material Process – Property

Integration

- Testing & characterization for material aging data cards development
- Development of process data cards through manufacturing process experimentation simulation loop.
- Development and deployment of coupled ply-forming and resin infiltration model for Wet Compression Molding (WCM)
- Developing compatibility between transition joints and WCM

PROJECT PARTNERS

Project Relevance

1. Achieve a 160 lbs. (73 kg) weight reduction

Aligns with U.S DRIVE Roadmap to enable weight reduction

2. Zero compromise on performance targets

- No compromise in crash performance, NVH, durability, strength and stiffness
- No compromise in the fit & packaging of other sub-systems

3. Cost increment limited to \$5 per pound (.453 kg)

Allowable increase of \$800 per glider system

4. Scalability

- Annual production of 200,000 vehicles
- Preservation/simplification of the OEM's factory assembly process

5. Recyclability

 Utilize recycled carbon fiber to enable sustainable lightweighting

Milestones

BUDGET PERIOD 1 (1st October 2021 to 31st December 2022)

- ✓ Design Requirements completed (Q4 2021)
- ✓ Conceptual Designs completed (Q1 2022)
- Metal-CF Transition Joint Machine Adaptations completed (Q4 2022)
- Metal-CF transition joint modeling completed (Q4 2022)
- Down-selected Conceptual Designs meeting performance criteria (Q4 2022)

BUDGET PERIOD 2 (1st January 2023 to 31st December 2023)

- ☐ Metal-CF transition joints verified to meet performance criteria (Q3 2023)
- ☐ Corrosion and life-time prediction models validated (Q4 2023)
- ☐ Performance prediction validated (Q4 2023)
- ☐ Mock-up sub-system verified to meet fit and integration criteria (Q3 2023)

BUDGET PERIOD 3 (1st January 2024 to 31st December 2024)

- ☐ Factory layout completed (Q4 2024)
- ☐ Glider recycling strategy complete (Q4 2024)
- ☐ Glider assembly complete (Q2 2024)
- ☐ Glider performance tests complete (Q3 2024)

Project Approach

Progress: Concept Development

Progress: Structural Performance

A summary of load cases and displacement contour plots for the considered baseline model.

Description of Load Cases considered

	Load Case	Description
1	Front Lateral	Lateral loading at front suspension points
2	Rear Lateral	Lateral loading at rear suspension points
3	Front Twist	Torsional loading at front suspension points
4	Rear Twist	Torsional loading at rear suspension points
5	Rear Bend	Bending load at rear suspension points
6	H point loading	Loading at seat mounting points
7	Front Crash	Small overlap front impact
8	Rear Crash	Small overlap rear impact
9	Side Pole Impact	Side pole loading near front/rear of vehicle
10	Roof Crush	Loading on the roof
11	Wheel Offset	Loading on front left wheel well
12	SICE	Side Impact Crashworthiness Evaluation (IIHS)

*Static Load Cases. (solved)
*Dynamic Load Cases. (ongoing)

Progress: UAM Process

Tensile strength	CF: 102.3 MPa Al: 129.5 MPa
Cross-tensile strength	2318 N
Corrosion cycling	No degradation after 120 cycles
Axial crush	+66% EA* +97% efficiency
Four-point bending	+86% EA +83% efficiency
Torsion	+48% EA +13% peak load

* EA: energy absorption

Collaborations

ACADEMIA PARTNERS

OEM PARTNER

GLOBAL N-TIER PARTNERS

MATERIALS & RECYCLING PARTNERS

Proposed Future Work

- Task 1.3: Cost, cycle times, plant layout and LCA
 - Assess, refine and down-select conceptual designs
 - Identifying process flows for LCA
- Task 1.4: End of life recycling
 - Identify opportunities to use CCI's recycled CF preforms in proposed conceptual designs
 - Incorporate CCI's process data into LCA
- Task 1.5: Transition Joint Development
 - Develop model for transition joints and incorporate into topology optimization
 - Develop material card for use in topology optimization using results from coupon-level transition joint model.
 - Complete UAM joint fabrication machine adaptations to meet cycle time requirements

■ Milestone: Transition joint modeling complete (Q4 2022)

Milestone: UAM machine adaptations complete (Q4 2022)

- Task 1.6: Multi-material Glider Optimization
 - ✓ Baseline FEA completed and results evaluated to establish complete set of design requirements/targets
 - Single material topology optimization
 - Multi-material topology optimization

☐ Milestone: Conceptual design meet performance criteria(Q4 2022)

Summary

Task 1.1 Glider design requirements - Complete

✓ Milestone: Design Requirements complete

Task 1.2 Systems design

- ✓ Milestone: Conceptual Designs complete
 - Design refinement and down-selection in-progress

Task 1.3 Cycle time assessment, cost modeling and LCA

- Methodology for Cost Model was developed
- Design concepts assessment in terms of manufacturability and cost inprogress.

Task 1.4 End of life recycling

Initial data from carbon conversions being assessed

Task 1.5 Metal-CF transition structure

- Coupon-level modeling using existing materials in progress
- UAM metal-CFRP transition joint fabrication process and system being developed to speed up fabrication. Beginning research on transition materials and design for specific joining applications.

Task 1.6 Multi material design optimization

- Baseline FEA completed and results evaluated to establish complete set of design requirements/targets
- Single material topology optimization in progress

Technical Back Up Slides

Cost Modelling

Objective:

 Develop a cost model that includes the cost of material, equipment, labor, energy consumed for the fabrication of all structural and non-structural parts of the glider.

Scope:

Includes all processes, both at OEM and offline.

Topology Optimization Workflow

Single Material Topology Optimization Results

*Static cases only

Objective	Min V	Min Σ compliance
Subject To	Max stress constraintBaseline compliance constraint	 Max stress constraint 25% (of design space) volume constraint
Material	Steel	Steel

Ultrasonic Additive Manufacturing (UAM) - Process

- Ultrasonic additive manufacturing uses solid-state ultrasonic metal welding to create metal parts
- Dispersal of oxide layer and collapsing of asperities lead to metallic bonding

Ultrasonic Additive Manufacturing (UAM) - System

9 kW SonicLayer 4000 UAM system

- 3-axis CNC mill with 25 HP, 8000 RPM spindle
- 1 m × 1 m × 0.6 m work volume
- 9 kW piezoelectric dual weld head and sonotrode for welding a variety of alloys including Al, Ti, and stainless steel
- 40 W integrated laser for micromachining, surface modification, and augmented embedding
- Automated feeder for metal foil
- Instrumented to record sensor data and input power during welding

Previous Results and Feasibility – Demonstration Parts W COMPOSITES &

Since dry fibers are embedded in a choice of metals, virtually any CFRP part can be laid up with integrated metal tabs, ribs, or attachment points that can be joined to other metal structures using traditional metal-to-metal joining methods

Previous Results and Feasibility – Key Test Results

Tensile strength

CF: 102.3 MPa Al: 129.5 MPa

Cross-tensile strength

2318 N

Corrosion cycling

No degradation after 120 cycles

Axial crush

+66% EA* +97% efficiency

Four-point bending

+86% EA +83% efficiency

Torsion

+48% EA +13% peak load

* EA: energy absorption

OSU-led Tasks

Task 5. Metal-CF transition structure development (M4-M24)

Perform detailed metal—CF transition joint development for fiber/fabric form choices, performance (tensile shear and cross-tension strengths), manufacturing approaches, joining and assembly options (spot welding or adhesives) and glider assembly to meet performance weight, cycle time, and cost goals

Task 5.1: UAM process adaptation (M4-M6)

- Adapt the UAM fabrication process to accommodate making steel-buffer-CF and aluminum-buffer-CF transition joints for glider sub-system structures over the course of this research program, including:
 - Designing and building a larger base fixture
 - Installing a high-speed spindle
 - o Fabricating a tool to facilitate placement of loops in the machined channels.
- Evaluate cost-effective fabrics such as glass fibers (E, S) and basalt fibers as buffer materials, compared with Kevlar

Task 5.2: UAM process conditions (M7-M9)

- Conduct welding trials and shear strength testing to identify good welding parameters
 - Utilize automotive-grade aluminum and low carbon steel that are compatible with automotive RSW processes
- Build and test steel-buffer transitions to assess weld quality and mechanical properties

Task 5.3. Fabrication and characterization of metal-CF transitions (M10–M24)

- Fabricate samples for testing according to the design developed in subtask 6.2
- Test and characterize samples according to standard automotive company tests used by the automotive industry
 - Tensile shear strength (TSS)
 - Cross-tension strength (CTS)
- Representative structures or components will be fabricated and tested based on the simulated loading conditions from glider sub-systems and assembly-level simulations. These validation tests will help ensure that the transitions will perform as intended for multi-material vehicle gliders.

Progress: UAM Process

Ultrasonic additive manufacturing (UAM) system modifications to speed up fabrication of metal-CFRP transitions

Henninger Type-832 speed increaser selected (36,000 RPM continuous operation)

Fiber alignment device prototyped for faster placement of tows

